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Abstract: Predicting future drought conditions is crucial for effective disaster management. 6 

In this study, a machine learning framework is proposed to predict hydrological drought in the Huaihe 7 

River Basin, China. The interpretable Extreme Gradient Boosting (XGBoost) model is applied to 8 

forecast four drought categories in 28 grid regions, using 26 factors for monthly and 18 for seasonal 9 

predictions. The framework also integrates the Shapley Additive Explanation (SHAP) variable 10 

importance index to infer drought prediction factors. The model achieves 79.9% accuracy in classifying 11 

droughts, with the Standard Precipitation Index (SPI) being the most influential factor. The SHAP values 12 

of SPI are 0.360, 0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively. Soil 13 

moisture content and evapotranspiration are particularly affected in spring and autumn, while large-scale 14 

climatic factors are more significant in summer and winter. Overall, this study offers valuable decision 15 

support for regional drought management and water resource allocation. 16 

Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin 17 

1 Introduction 18 

Drought is a global disaster characterized by its long duration and extensive impacts, resulting in 19 

severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou 20 

et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have 21 

increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and 22 

food supply in some areas. Therefore, drought prediction is of great significance for managing water 23 

resources and reducing losses caused by drought. 24 

Consequently, according to the different effects of drought, previous studies have divided it into 25 

several different types. Among them, four types of droughts are widely used: meteorology, hydrology, 26 

agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In 27 
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the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic 28 

variables have been proposed to represent different drought characteristics. For example, the Palmer 29 

Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPI) (McKee et al., 30 

1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are 31 

robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore, 32 

this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological 33 

drought.  34 

In recent years, there has been an increasing trend toward utilizing machine learning to predict 35 

droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models, 36 

machine learning-based models better capture non-linear characteristics inherent in drought problems 37 

and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh, 38 

2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models 39 

such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector 40 

machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost) 41 

(Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research 42 

field of drought. Machine Learning models can learn the input-output relationships in training data and 43 

can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-44 

based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning 45 

models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model 46 

to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings 47 

demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the 48 

XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively 49 

insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).  50 

Previous research indicates that numerous factors significantly impact hydrological drought. Zou et 51 

al. (2018) demonstrated that climate change is the primary factor affecting hydrological drought on long-52 

term scales. Wang et al. (2021) found that climatic variables such as precipitation and evapotranspiration 53 

significantly influence the duration of hydrological drought. Additionally, Gan et al. (2023) revealed that 54 

large-scale climatic factors and sunspot activity have a substantial impact on hydrological drought events 55 

in the Huaihe River Basin. Despite many studies showing that machine learning models outperform 56 

physical models in terms of prediction accuracy, these models lack transparency and interpretability. 57 
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Most research on machine learning models for drought prediction focuses on model performance, often 58 

neglecting the role of different factors influencing drought occurrence in model predictions. For example, 59 

Xu et al. (2022) established a hybrid model combining autoregressive integrated moving averages 60 

(ARIMA) and long short-term memory (LSTM) to predict the standardized precipitation 61 

evapotranspiration index at multiple time scales. Yu et al. (2023) combined the Hydrologiska Byrans 62 

Vattenbalansavdelning (HBV) model with an LSTM neural network to improve the prediction ability for 63 

semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional neural networks (CNN) 64 

and LSTM to enhance the prediction accuracy of the standardized precipitation evapotranspiration index. 65 

However, these studies do not consider the influence of different factors on the model output. 66 

Recent advancements in Explainable AI (XAI) techniques have provided opportunities for 67 

understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently, 68 

local interpretability methods have been developed and can be implemented for neural network and 69 

random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic 70 

Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to 71 

considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the 72 

Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong 73 

theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension 74 

on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, there are few studies 75 

on interpretable machine learning using the SHAP algorithm. For example, Dikshit and Pradhan (2021) 76 

employed an LSTM model combined with the SHAP algorithm to predict droughts, demonstrating that 77 

the inclusion of climate variables as predictors can enhance prediction accuracy. Similarly, Mardian et 78 

al. (2023) utilized an XGBoost model and SHAP to forecast droughts in the Canadian prairies, and 79 

clarified the importance of spatial and temporal predictors, drought indicators, GRACE groundwater 80 

distribution and teleconnection in drought prediction. However, the range of drought-influencing factors 81 

considered in their research is still not comprehensive enough. For example, soil temperature and water 82 

content, surface thermal radiation and other factors are also important factors affecting drought (Raposo 83 

et al., 2023). 84 

In light of the above, the novelty of this study is to employ interpretable machine learning models 85 

for hydrological drought prediction and to identify the contribution of different influencing factors to the 86 

model prediction results. While SPI is a precursor to SRI, this study disentangles the hierarchy of 87 
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contributing factors, including SPI, large-scale climate indices, and soil moisture. Soil moisture directly 88 

affects hydrological drought, and it can analyze the contribution of different factors to drought when it 89 

is predicted together with drought factors such as large-scale climate factors. For example, Mardian et al. 90 

(2023) employed a method combining the XGBoost model with SHAP (Shapley Additive Explanations) 91 

values, utilizing a variety of drought influencing factors such as large-scale climatic factors and soil 92 

moisture, to predict drought conditions in the context of the Canadian Drought Monitor (CDM) and to 93 

understand the underlying driving factors. Therefore, the objectives of the study are: ⅰ) Utilizing the 94 

XGBoost model, combined with 26 factors predicted monthly and 18 factors predicted seasonally, the 95 

hydrological drought in the Huaihe River Basin is predicted, and the performance evaluation is carried 96 

out by using precision and recall indicators; ⅱ) Various SHAP plots were employed to gain insights into 97 

the model outputs and analyze the influence of different drought variables on the predictive results of the 98 

model.  99 

2 Study area and data 100 

2.1 Study area 101 

In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the 102 

grid is divided at a resolution of 1°lat×1°lon, with a total of 28 grid regions, which takes into account the 103 

computational feasibility and spatial heterogeneity. Although large-cale climatic factors have spatial 104 

consistency, their effects on regional precipitation can be different through local terrain-atmosphere 105 

feedback (Lu et al., 2006). Gridded analysis identifies sensitive subregions, supporting targeted 106 

mitigation. The Huaihe River Basin is located at 111°55'–121°25'E, 30°55'–36°36'N, covering an area of 107 

approximately 270,000 square kilometers. It experiences significant spatiotemporal variations in 108 

precipitation, with an average annual precipitation of around 883 millimeters. Situated in the transitional 109 

climatic zone from south to north, the southern part of the basin falls under a subtropical climate, while 110 

the northern part experiences a warm temperate climate. The average annual temperature ranges from 11 111 

to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn and summer 112 

seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts and floods. 113 

The average annual runoff depth in the basin is 230 millimeters. Due to its unique geographical location, 114 

the area is prone to frequent flooding, leading to high water levels and prolonged flood conditions. In 115 
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addition, the annual average water surface evaporation in the Huaihe River Basin ranges from 900 to 116 

1500 millimeters. As one of the important agricultural production bases in China, the basin is densely 117 

populated with substantial water demands. However, the region frequently suffers from drought disasters. 118 

Since the beginning of the 21st century, an average of 2.698 million hectares of crops, accounting for 21% 119 

of the total cultivated land area in the basin, have been affected annually.  120 

 121 
Figure 1: Huaihe River Basin and 28 grid area location. 122 

2.2 Data 123 

We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly 124 

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin 125 

from the website https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.0/ for the period 1960 to 126 

2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal 127 

radiation, surface pressure, and leaf area index data sets were obtained from the ERA5-Land reanalysis 128 

dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the 129 

basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the 130 

region is not divided into grids. The grid analysis is carried out with these grid points as the center and 131 

1°lat×1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method in array, 132 

the data of Huaihe River Basin are interpolated to 28 grid regions. 133 
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Numerous studies have demonstrated the significant influence of large-scale climate indices, 134 

including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern 135 

(NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van 136 

et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a 137 

decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical 138 

high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the 139 

monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate factors (Nino3.4, 140 

AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from the National 141 

Oceanic and Atmospheric Administration (NOAA) climate database 142 

(http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014. 143 

3 Methods 144 

3.1 Drought index 145 

In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize 146 

meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of 147 

calculation and ability to work on multiple time scales. The calculation method of SPI is as follows:
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Assuming that the precipitation series x  at a certain time scale follows a stationary gamma 151 

distribution, where  and   are the scale and shape parameters ( 0  , 0  ). The cumulative 152 

probability ( )xF of each item is normalized to obtain the corresponding SPI. 153 

The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective 154 

and accurate index for describing hydrological drought characteristics. It has been widely used in 155 

hydrological drought identification. SRI is also calculated by transforming the cumulative flow 156 

distribution of a given time scale into a standard normal distribution using equiprobability transformation, 157 

similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al. 158 

2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1), 159 
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Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However, 160 

due to the limited number of extreme drought events, it posed an issue in training the model. Therefore, 161 

the classes of Severe drought and Extreme drought were merged into one. 162 

Table 1: Drought class classification and corresponding SPI values and SRI value. 163 

    SPI/SRI value    Class 

> 0 

0 to -1.0 

-1.0 to -1.5 

-1.5 to -2.0 

Normal 

Mild  

Moderate 

Severe 

≤ -2.0 Extreme 

3.2 Machine learning models 164 

In this paper, the XGBoost model is used for multi-input single-output regression prediction 165 

problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an 166 

ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as 167 

its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new 168 

models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting 169 

decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost 170 

can be found in the paper by Chen and Guestrin (2016). Assuming we have K base models denoted as171 

( ) Fxft  Kt ,......,2,1=  , where F   the model space contains all the base models, the XGBoost 172 

model can be represented using the following function: 173 

  ( ) ( ) =
==

k

t t xfxF
1

ŷ  (3)  174 

Where the parameters of the XGBoost model primarily consist of the structure of each tree and the 175 

scores in the leaf nodes, that is, the learning of each function ( )xf t .
 176 

As each base model is generated in a certain sequential order, the creation of the subsequent tree 177 

takes into account the predictions made by the preceding tree. Therefore, the objective function of the t  178 

base model can be expressed as follows: 179 
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Here, 
( )( )1

ˆ,
−t

ii yyl  represents the loss function related to 
( )1

ˆ,
−t

ii yy  ,
( )1−t

iy  denotes the 181 

predictions of the first 1−t  decision trees for sample i (i.e., the sum of predictions made by the first 182 

1−t  trees), 
iy  represents the actual value of sample i  , ( )it xf  represents the prediction of the t183 

decision tree for sample i  , and ( )tf  represents the model complexity of the t  tree. Therefore, 184 

the predictions of the first k  trees for the sample i  are equal to the predictions of the first 1−k  185 

trees plus the prediction of the k  tree. 186 

3.3 Model input data 187 

The XGBoost model for 28 grid areas is established, and the data types used in each region are the 188 

same. As shown in Table 1, for the monthly data analysis, 26 different drought-influencing factors were 189 

considered. These include a month-scale SPI (SPI-1) and SPI indices at different time scales of 1 month 190 

and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI, NP), 191 

evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net thermal 192 

radiation, surface net solar radiation, surface pressure and leaf area index were considered. 193 

As shown in Table 2, for seasonal data analysis, the basin data are classified by season, and 18 194 

different drought influencing factors are used. It includes SPI-3 value, soil moisture content, 195 

evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO, 196 

TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar 197 

radiation in four seasons.  198 

For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to 199 

analyze the contribution of 28 grid regions to determine the impact of each factor. 200 

Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning 201 

systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs 202 

both monthly and seasonal analyses to comprehensively assess short-term variability and long-term 203 

trends in hydrological drought. 204 

Table 2: The drought impact factors of the monthly scale prediction input of the model (T is the lead time, 205 

SPI-1, SPI-3, SPI-6, and SPI-9 are SPI values at different monthly scales.). 206 

Drought influencing factors（monthly） 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

SPI-1 

T=1 SPI-1 

T=1 SPI-3 

T=1 SPI-6 

T=1 SPI-9 

T=2 SPI-1 

T=2 SPI-3 

T=2 SPI-6 

T=2 SPI-9 

d2m temperature 

surface pressure 

evapotranspiration 

Air temperature 

wind speed 

surface net solar radiation 

surface net thermal radiation 

0-10cm soil moisture 

100-200cm soil moisture 

Nino3.4 
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20 

21 

22 

23 

24 

25 

26 

AMO 

PDO 

AO 

TNI 

NP 

TPI 

leaf area index 

Table 3: The drought impact factors of seasonal prediction input of model. 207 

Drought influencing factors（seasonal） 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SPI-3 (different seasons) 

d2m temperature 

surface pressure 

evapotranspiration 

Air temperature 

wind speed 

surface net solar radiation 

surface net thermal radiation 

0-10cm soil moisture 

100-200cm soil moisture 
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11 

12 

13 

14 

15 

16 

17 

18 

Nino3.4 

AMO 

PDO 

AO 

TNI 

NP 

TPI 

leaf area index 

3.4 Model evaluation 208 

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized 209 

to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These 210 

predictions will be assessed using precision and recall as measurement metrics. Precision is defined as 211 

the ratio of correctly classified instances of a specific class to the total number of predicted instances, 212 

quantifying the model's precision in predicting drought conditions and evaluating its reliability. 213 

Conversely, recall represents the ratio of correctly classified instances of a specific class to the total 214 

number of observed instances in that class, capturing the probability of the model predicting observed 215 

drought conditions and reflecting its sensitivity (Mardian et al., 2023; Zhang et al., 2023). 216 

   
FPTP

TP
precision

+
=  (5) 217 

 
FNTP

TP
callR

+
=e  (6) 218 

Where the classification evaluation metrics employed are True Positives (TP), False Positives (FP), 219 

and False Negatives (FN). TP denotes the number of actual positive samples correctly predicted as 220 

positive, FP represents the number of actual negative samples incorrectly predicted as positive, and FN 221 

signifies the number of actual positive samples incorrectly predicted as negative. 222 
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3.5 Shapley Additive Explanations (SHAP) 223 

SHAP, a machine learning interpretability method, provides a unified approach by combining 224 

elements from additional variable attribution methods with Shapley values as a measure of variable 225 

importance. Shapley values were originally introduced in game theory to determine the contributions 226 

made by each player in cooperative games. The fundamental idea is that each player receives a 227 

corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is 228 

straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the 229 

model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction 230 

process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of 231 

Shapley values to explain the influence of each variable on model predictions, thereby providing 232 

increased transparency to the model. The Shapley value is calculated as the average marginal contribution 233 

based on all possible variable permutations. The mathematical expression for the classic SHAP value is 234 

as follows: 235 

  

( )
 ( ) ( )

! 1 !

!
i

S N

S n S
v S i v S

n




− −
 =  −   (7) 236 

Where 𝜑𝑖  represents the contribution of variable i   , N  represent the set of all variables, n237 

denote the number of variables N  , S   indicate the subset of N  that includes variable i   , and 238 

( )Nv  represent the baseline, which signifies the predicted outcome of each variable in N  when their 239 

values are unknown. 240 

The model results for each observed value are estimated by summing the SHAP values of each 241 

variable corresponding to that observed value. Hence, formulating the explanation model as follows:  242 

 ( ) 
=

+=
M

i

ii zzg
1

0   (8) 243 

Where,  M
z 1,0 , the variable quantity is denoted as M, and the value 

i  can be obtained from 244 

equation (7). SHAP offers a variety of AI model explainers. 245 

In this study, we utilized a tree explainer to compute SHAP values based on the best XGBoost model 246 

for assessing drought impacts, aiming to estimate the contributions of each variable. 247 
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4 Results  248 

4.1 Model performance 249 

The study period for this research spans from 1960 to 2014, with the model training period from 250 

1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid 251 

areas are the same. Take the 7th grid area as an example, when using monthly data, the input was 26 252 

different drought influencing factors, and the output was SRI-1. The number of input samples during 253 

model training was 13767, and the number of output samples was 526. There are 3432 input samples and 254 

132 output samples during the model prediction period. When using seasonal data, the input is 18 factors 255 

without drought, and the output is SRI-3 in different seasons. The number of input samples during model 256 

training is 792, and the number of output samples is 44. The number of input samples in the model 257 

prediction period is 198, and the number of output samples is 11. According to the data in Table 4 and 258 

Figure 2, the overall precision of the XGBoost model is 79.9%, which means that it has a 79.9% ability 259 

to correctly identify drought classes. In the identification of the ND drought class, the performance of 260 

the model is particularly excellent. Figure 2 shows that the median precision and recall rate of the ND 261 

class are both more than 0.8. It can be seen from the data in Table 4 that the recall rate of the ND drought 262 

class is 91% and the precision rate is 88%, which proves that the model has high sensitivity and reliability 263 

in predicting the ND drought class. At the same time, the precision rates of ND and D3 drought classes 264 

are 88% and 86%, respectively, indicating that the model had good prediction accuracy for these two 265 

types of droughts. However, the precision rates of the D1 and D2 drought classes are 74% and 61%, 266 

respectively, reflecting the lack of prediction accuracy of the model in these classes. 267 

In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model 268 

for each drought class in 28 grid regions. Although the median precision and recall of the D1 drought 269 

class are both close to 0.8, indicating that the model has a high predictive ability in this class, the 270 

performance of the D2 and D3 drought classes is relatively poor. Especially for the D3 drought class, the 271 

median recall rate does not exceed 0.5, indicating that the model is not sensitive to the identification of 272 

such drought events, and there are some limitations in the prediction. owever, although the recall rate of 273 

the D3 drought class is low, its precision is almost as high as the ND drought class, which is mainly due 274 

to the low frequency of D3 drought class events. The model can successfully capture all D3 drought class 275 

events in some grid areas, thereby improving the precision of this class. 276 
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Table 4: The average accuracy and recall rate indicators for each drought level predicted by the 28 regional 277 

models. 278 

Class Precision (%) Recall (%) 

ND 88 91 

D1 74 78 

D2 61 47 

D3 86 50 

 279 

 280 

Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional 281 

models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the 282 

average.). 283 

4.2 Prediction maps 284 

According to the predicted drought data, 2011 was identified as a year with relatively severe drought 285 

conditions. To visually assess the predictive capability of the model, drought predicted, observed, and 286 

difference maps were created for each month of 2011 (Figure 3 to Figure 5). In 2011, the model accurately 287 

captured drought situations across most regions. In January, the drought situation was severe, and the 288 

drought class was mainly in the D2 and D3 classes. However, the prediction map of the model shows 289 
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that the drought degree in most regions is lighter than the actual drought situation, and the drought class 290 

is mainly classified as D1, which relatively underestimates the actual situation of drought. In February, 291 

the drought situation was rapidly reduced, and the prediction map of the model was basically consistent 292 

with the observation map. In March and April, the drought conditions in the entire basin rapidly escalated 293 

and became severe, and most of the areas in the observation map reached the drought classes of D2 and 294 

D3, and only a few areas in the north were classified as D1 drought class. Consequently, this period poses 295 

a considerable challenge to the predictive ability of the model, making it an appropriate period to evaluate 296 

the predictive performance of the model. In general, the model effectively predicts the occurrence and 297 

deterioration of drought and captures the spatial distribution pattern. However, in some parts of the 298 

central and western regions, the model still underestimates the drought situation. 299 

 300 
Figure 3: The observed drought types of each month in 2011. 301 

In May, the severity of the drought situation decreased relative to the previous two months, and the 302 

actual observed map and the model-predicted map were largely consistent. According to the observed 303 

map, in June, a drought occurrence was observed in the northern region where no drought had been 304 

previously recorded. Furthermore, in July, the drought area shifted from the northern to the western 305 

region. It was not until August that drought gradually diminished in most areas. Basically, the model 306 
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captures the change of drought, but for some areas of D3 drought class, the model predicts them as D2 307 

drought class. 308 

 309 
Figure 4: The drought types of each month in 2011 predicted by the Model. 310 

In September, drought conditions were found in the eastern and southern regions on the observed 311 

map. However, the drought situation in some areas is underestimated on the map predicted by the model. 312 

In October, the model significantly overestimated the severity of the drought situation. According to the 313 

observed map, all regions except a small part of the western region experienced the D1 drought class. In 314 

contrast, the model-predicted map shows widespread drought across the region, with most of the regions 315 

classified in the D2 drought class. In November and December, the drought in the observation map 316 

dissipated rapidly, and the drought situation was basically the same as that in the model prediction map. 317 
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 318 
Figure 5: The difference between the predicted results of the model and the observed data values (Difference 319 

= SRIprediction - SRIactual). 320 

In general, the XGBoost model has a great performance in capturing the spatial structure and 321 

temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates 322 

that while the model can distinguish between drought and non-drought conditions, it lacks clarity in 323 

defining the boundaries between different drought classes. In most cases, the model underestimates 324 

drought conditions compared to the observed results. 325 

4.3 Variable importance analysis 326 

4.3.1 Monthly prediction analysis 327 

To study the effects of different factors on drought, 26 different drought influencing factors were 328 

considered, and the corresponding influencing factors are analyzed for 28 grid regions, and the 329 

contribution analysis is made with SHAP values. Due to the limited space, only the analysis of the 7th 330 

grid region is shown in Figure 6. Figure 6 reveals the contribution of each input feature based on the 331 

SHAP value of each instance in 28 grid regions. In the vertical direction, the variables in the bee colony 332 

graph are sorted according to their absolute SHAP values, which also reflects the importance of ranking 333 

variables. The density of points represents the eigenvalues of each instance in each row. The X-axis 334 
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shows the SHAP value corresponding to a single instance. The left side of the Y-axis of the bee colony 335 

graph represents the negative total contribution of the features in the XGBoost model, while the right 336 

side represents the positive total contribution. The analysis reveals that SPI plays a dominant role, 337 

followed by AMO and evapotranspiration. 338 

 339 

Figure 6: The SHAP values of 26 different influencing factors in each month of the 7th grid region from 2004 340 

to 2014. 341 

Figure 7 illustrates the interpretability of the XGBoost model focusing on the 7th grid region, 342 

providing insights into the average impact of the 26 influencing factors on model output. These findings 343 

corroborate the insights from Figure 6, highlighting that SPI, AMO, and evapotranspiration are the 344 

predominant factors influencing the predictions of the model. Table 3 indicates that the absolute average 345 

SHAP value of SPI, incorporating monthly precipitation data for the entire basin, is 0.190, marking it as 346 

the most substantial influence on hydrological drought within the 7th grid region. 347 
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 348 
Figure 7: The absolute average SHAP values of 26 different influencing factors at the 7th grid region from 349 

2004 to 2014. 350 

To gain a deeper understanding of the factors contributing to drought events in the study area, As 351 

shown in Figure 8, this study shows the spatial distribution of the first three main drought-influencing 352 

factors and discusses the changes of drought-influencing factors in the basin. The results show that the 353 

main influencing factor of hydrological drought in the Huaihe River Basin is meteorological drought. As 354 

shown in Table 5, the absolute average SHAP value of the first influencing factor is significantly higher 355 

than that of the second and third influencing factors. Large-scale climate factors (particularly AMO) 356 

emerge as the secondary major influence, and about half of the North Central Basin is significantly 357 

dependent on these factors. For the third influencing factor, a diverse range of large-scale climate 358 

variables, such as TPI, PDO, NP, TNI, and AMO, affect almost half of the study area. In summary, the 359 

foremost determinant of hydrological drought is meteorological drought. Large-scale climate factors 360 

(notably AMO) rank second in importance, followed by factors like soil moisture content, and so on. 361 
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The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant 362 

driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al. 363 

(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this 364 

region. Further support arises from Wang et al. (2021), whose analysis of drought propagation 365 

mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil 366 

moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and 367 

evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe 368 

River Basin, the influence of large-scale climate factors in this study is more prominent, which may be 369 

related to the fact that the Huaihe River Basin is located in the climate transition zone and is more 370 

sensitive to the air-sea coupling phenomenon. 371 

Table 5: The first three drought influencing factors and the SHAP value of the absolute average influence of 372 

28 grid areas in Huaihe River Basin. 373 

SHAP 

value 

 

grid  

area 

The first 

influencing 

factor 

Average 

SHAP 

value 

The second 

influencing factor 

Average 

SHAP 

value 

The third 

influencing factor 

Average 

SHAP 

value 

1 SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038 

2 SPI-1 0.190 AO 0.018 

Soil moisture 

content(100-

200cm) 

0.014 

3 SPI-1 0.189 TPI 0.030 

Soil moisture 

content(100-

200cm) 

0.023 

4 SPI-1 0.178 NP 0.020 PDO 0.016 

5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017 

6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021 

7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023 

8 SPI-1 0.212 TPI 0.030 TNI 0.020 

9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028 

10 SPI-1 0.195 AMO 0.037 
Surface net 

thermal radiation 
0.031 

11 SPI-1 0.226 AMO 0.037 TNI 0.012 

12 SPI-1 0.221 AMO 0.033 T=2 SPI-3 0.017 

13 SPI-1 0.228 AMO 0.028 NP 0.026 

14 SPI-1 0.204 
Soil moisture 

content(100-200cm) 
0.057 T=1 SPI-1 0.029 
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15 SPI-1 0.160 
Soil moisture 

content(100-200cm) 
0.033 NP 0.032 

16 SPI-1 0.157 Wind speed 0.033 AMO 0.030 

17 SPI-1 0.186 AMO 0.064 Evapotranspiration 0.025 

18 SPI-1 0.235 AMO 0.040 
Soil moisture 

content(0-10cm) 
0.032 

19 SPI-1 0.168 TPI 0.055 AMO 0.035 

20 SPI-1 0.172 AMO 0.038 T=2 SPI-3 0.026 

21 SPI-1 0.165 AMO 0.039 PDO 0.039 

22 SPI-1 0.179 AMO 0.042 Evapotranspiration 0.025 

23 SPI-1 0.176 AMO 0.029 T=1 SPI-9 0.022 

24 SPI-1 0.189 PDO 0.053 AMO 0.021 

25 SPI-1 0.149 AMO 0.055 TPI 0.024 

26 SPI-1 0.160 AMO 0.043 PDO 0.030 

27 SPI-1 0.169 AMO 0.047 T=2 SPI-3 0.018 

28 SPI-1 0.287 NP 0.025 T=1 SPI-1 0.016 

 374 

Figure 8: The first three drought-influencing factors of 28 grid areas in the Huaihe River Basin. 375 

4.3.2 Seasonal prediction analysis 376 

To accurately reflect the differences in drought-influencing factors across different seasons, this 377 

study utilized 18 different drought-influencing factors to predict the hydrological drought in the Huaihe 378 

River Basin. Histograms of the absolute average SHAP values for different influencing factors in four 379 

seasons in the 7th grid region are presented in Figure 9. The absolute average SHAP values of SPI-3 in 380 

spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247 respectively, which had the 381 

greatest impact on hydrological drought in the same season. In addition, the absolute average SHAP 382 

values of evapotranspiration, soil moisture content, air temperature, and surface net thermal radiation 383 

were close to or exceeded 0.05, which also had a significant impact on hydrological drought in the Huaihe 384 

River Basin. 385 
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 386 

Figure 9: The absolute average SHAP values of 18 different influencing factors in the 7th grid region of four 387 

seasons ((a) Spring; (b) Summer; (c) Autumn; (d) Winter). 388 

To understand the spatial and temporal distribution characteristics of drought and the potential 389 

impact mechanism, Figure 10 displays the spatial distribution of the top three influencing factors in each 390 

season. The leading influencing factors across the four seasons include SPI-3, soil moisture content, and 391 

surface net thermal radiation, with SPI-3 being predominant across all seasons and regions. As shown in 392 

Figure 11, the absolute average SHAP value of the primary factor exceeded the sum SHAP values of the 393 

second and third factors. Aside from SPI-3, soil moisture content also exerts a significant influence on 394 

hydrological drought in summer and autumn, particularly in the southern and southeastern parts of the 395 

river basin. In winter, certain areas in the central part of the river basin are mainly affected by surface net 396 

thermal radiation and surface net solar radiation.  397 
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From the perspective of the second influencing factor, hydrological drought in most areas of the 398 

basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the region, 399 

surface pressure, temperature, radiation, and other factors also play an important role. It is worth noting 400 

that in the 15th grid region, the surface pressure becomes a key secondary influencing factor, and its 401 

absolute average SHAP value reaches 0.175. This value is significantly higher than the second impact 402 

factor in other regions, and even close to the primary impact factor in the same grid area. This indicates 403 

that it is extremely sensitive to surface pressure in this particular place. During summer, the influence of 404 

large-scale climatic factors such as the AMO, PDO, and TPI becomes more pronounced compared to 405 

spring. Additionally, soil moisture content and surface radiation continue to account for a substantial 406 

proportion of the influence on hydrological drought. Regions with absolute average SHAP values 407 

surpassing 0.1 in summer constitute approximately one-seventh of the study area, indicating elevated 408 

sensitivity to these factors during this season. Similar to spring, soil moisture content and 409 

evapotranspiration remain predominant influencing factors for hydrological drought in half of the grid 410 

areas during autumn and winter. The remaining regions are mainly influenced by surface net thermal 411 

radiation and surface net solar radiation. Specifically, during winter, the second influencing factors for 412 

three grid regions (the 12th, 13th, and 21st grid regions) in the central part of the basin are soil moisture 413 

content and evapotranspiration, with absolute average SHAP values exceeding 0.1. This indicates a 414 

relatively higher influence of these secondary factors in these regions compared to others. 415 

Compared with the second impact factor, the large-scale climatic factors in the third impact factor 416 

have an increased influence on hydrological drought in the four seasons. In spring and autumn, soil 417 

moisture content exhibits a more substantial influence on hydrological drought, while in summer, air 418 

temperature is considered to be a more important factor. However, in winter, half of the study areas 419 

continue to be dominated by soil moisture content and evapotranspiration, whereas most of the remaining 420 

study areas are primarily influenced by large-scale climate factors such as TNI, PDO, NP, and AO. 421 
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 422 
Figure 10: The first three drought-influencing factors of 28 grid points in Huaihe River Basin in each season. 423 

According to the above results, there were significant differences in the influencing factors of 424 

drought among the four seasons. This diversity highlights the need for us to pay more attention to the 425 

weights and dynamic changes of various influencing factors when predicting and understanding the 426 

spatial-temporal distribution characteristics of drought. Although the SPI factor continues to dominate, 427 

at some grid points, factors such as soil moisture content in summer and autumn, as well as thermal 428 

radiation in winter, cannot be ignored. This suggests that even for the same influencing factor, its 429 

influence can vary greatly in different seasons and regions. Furthermore, in addition to the influence of 430 

meteorological drought, the influencing factors of spring hydrological drought are mainly biased toward 431 

soil moisture content and evapotranspiration, in addition to surface pressure, temperature, radiation, and 432 

other related factors. The absolute average SHAP value of these influencing factors is basically no more 433 

than 0.1, which is very different from SPI-3, but its impact on hydrological drought cannot be ignored. 434 

In autumn and winter, the above factors still dominate, but at the same time, the proportion of large-scale 435 

climate factors gradually increases, indicating that climate change between different seasons may play 436 

an important regulatory role in the composition of drought-influencing factors. 437 
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 438 
Figure 11: The absolute average SHAP values of the first three drought-influencing factors in each season 439 

(The X-axis represents 28 grid regions in the Huaihe River Basin). 440 

5 Discussion 441 

SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential 442 

predictor of hydrological drought across the Huaihe River Basin. Beyond SPI, the key secondary drivers 443 

exhibit a distinct spatial and seasonal differences. In terms of space, the hydrological drought in the 444 

northern part of the basin shows higher sensitivity to large-scale climate oscillations such as AMO, 445 

indicating that large-scale climate factors regulate regional precipitation patterns (Yu et al., 2024). On 446 

the contrary, the secondary factors affecting the hydrological drought in the southern part of the basin are 447 

mainly surface processes, especially soil moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et 448 

al., 2025). The difference in the second influencing factors of hydrological drought in the southern and 449 

northern parts of the basin may be due to the fact that the basin belongs to the temperate-subtropical 450 

transition position. For the seasonal scale, in spring, soil moisture and evapotranspiration account for a 451 

large proportion of the explanatory power of the model. In summer, the relative weight of large-scale 452 

climatic factors increases, which is consistent with the enhancement of water vapor transport (Yu et al., 453 

2024). In autumn and winter, radiative fluxes (net solar and thermal radiation) assume greater importance 454 

(Jin et al., 2025). Collectively, these findings underscore SPI as the primary driver while revealing the 455 

nuanced spatio-temporal controls exerted by secondary factors, thereby providing a scientific foundation 456 
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for developing more targeted drought mitigation and water resource management strategies across the 457 

diverse Huaihe River Basin. 458 

When studying the influence of large-scale climate indices on drought, the correlation between 459 

climate indices and drought for the same period and a certain lead time is often considered, and the results 460 

show that climate indices for the same period and different lead times have a certain influence on drought 461 

in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et 462 

al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0, 463 

1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-464 

October, and PDO has significant correlation in January-May and June-December of the same period. 465 

Lv et al. (2022) analyzed the correlation between large-scale climatic factors and drought in different lag 466 

periods. The results show that large-scale climatic factors in the same period also have an impact on 467 

drought. Due to the many influencing factors considered in this paper, only the effect of climate indices 468 

on drought in the basin during the same period was considered when selecting the large-scale climate 469 

indices. Subsequent studies can consider selecting the most relevant large-scale climate factors in 470 

different months or seasons as the influencing factors for basin drought prediction to further improve the 471 

accuracy of drought prediction. Before inputting the influencing factors into the machine learning model 472 

for training, methods such as random forest and principal component analysis (PCA) can be used to select 473 

the influencing factors. The application of these methods can optimize the influencing factors and provide 474 

strong support for more accurate drought trend prediction and management strategies. 475 

6 Conclusions 476 

Drought is one of the most significant environmental and climate problems in the world, and 477 

drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and 478 

XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show 479 

the impact of different drought influencing factors on drought. The framework can provide two types of 480 

support for decision makers: (1) giving priority to high weight factors in real-time drought warning; (2) 481 

Identifying early risk signals in long-term water resources planning. The main conclusions are as follows: 482 

1) The XGBoost model achieved an accuracy of 79.9% for identifying drought classes. The 483 

model performs particularly well in predicting ND and D1 drought classes, with a precision rate of 484 
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88 % and 74 %, respectively. It also has a recall rate of 91 % and 78 %. However, the prediction 485 

performance of the model for the D2 and D3 drought classes is relatively poor, especially for the 486 

D3 drought, the recall rate should not exceed 0.5, indicating that the recognition sensitivity of the 487 

model for the D3 class is limited. In general, the model has high prediction reliability for ND and 488 

D1 classes, but limits in the prediction performance of D2 and D3 classes. 489 

2) This study determined that SPI is the most critical factor affecting hydrological drought 490 

in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less 491 

than 0.147, which is much higher than other influencing factors. In addition, large-scale climate 492 

factors, soil moisture content, and evapotranspiration play a significant role in hydrological drought 493 

in the basin.  494 

3) The SPI remains a major influence in all seasons with absolute average SHAP values of 495 

0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional 496 

factors such as soil moisture content, net heat radiation, and solar radiation also play seasonal roles. 497 

Soil moisture content and evapotranspiration are significant factors in spring and autumn, while 498 

temperature and large-scale climate factors are critical in summer and winter. 499 
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