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6 Abstract: Predicting future drought conditions is crucial for effective disaster management.

7 In this study, a machine learning framework is proposed to predict hydrological drought in the Huaihe

8 River Basin, China. The interpretable Extreme Gradient Boosting (XGBoost) model is applied to

9 forecast four drought categories in 28 grid regions, using 26 factors for monthly and 18 for seasonal
10  predictions. The framework also integrates the Shapley Additive Explanation (SHAP) variable
11 importance index to infer drought prediction factors. The model achieves 79.9% accuracy in classifying
12 droughts, with the Standard Precipitation Index (SPI) being the most influential factor. The SHAP values
13 of SPI are 0.360, 0.261, 0.169, and 0.247 for spring, summer, autumn, and winter, respectively. Soil
14 moisture content and evapotranspiration are particularly affected in spring and autumn, while large-scale
15 climatic factors are more significant in summer and winter. Overall, this study offers valuable decision
16 support for regional drought management and water resource allocation.

17 Keywords: XGBoost; SHAP; Drought prediction; SRI; Huaihe River Basin

18 1 Introduction

19 Drought is a global disaster characterized by its long duration and extensive impacts, resulting in
20 severe implications for the economy, agriculture, and environment (Fu et al., 2018; Shi et al., 2018; Zhou
21 et al., 2020; 2021). Over the past 20 years, the frequency and severity of global drought events have
22 increased (Dai 2011; 2012; 2013; Zhang et al., 2019), affecting water security, economic growth, and
23 food supply in some areas. Therefore, drought prediction is of great significance for managing water
24 resources and reducing losses caused by drought.

25 Consequently, according to the different effects of drought, previous studies have divided it into
26 several different types. Among them, four types of droughts are widely used: meteorology, hydrology,

27 agriculture, and social economy (Wilhite and Glantz, 1985; American Meteorological Society, 2013). In



https://doi.org/10.5194/egusphere-2025-1891
Preprint. Discussion started: 25 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

28 the past few decades, more than one hundred drought indices based on single or multiple hydroclimatic
29 variables have been proposed to represent different drought characteristics. For example, the Palmer
30 Drought Severity Index (PDSI) (Palmer 1965), the Standardized Precipitation Index (SPI) (McKee et al.,
31 1993), and the Standardized Runoff Index (SRI) (Shukla and Wood, 2008). SPI index and SRI index are
32 robust, statistically straightforward to compute, and well-suited to long-term time series data. Therefore,
33 this study chooses the SPI index and SRI index to characterize meteorological drought and hydrological
34 drought.

35 In recent years, there has been an increasing trend toward utilizing machine learning to predict
36 droughts (Ardabili et al., 2020; Sun and Scanlon, 2019). Compared to conventional regression models,
37 machine learning-based models better capture non-linear characteristics inherent in drought problems
38 and exhibit more robustness, especially when dealing with high-dimensional datasets (Mishra and Singh,
39 2010; Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022). Multiple machine learning models
40 such as artificial neural networks (Orimoloye et al., 2021; Orimoloye et al., 2022), support vector
41 machines (Li et al., 2021), random forests(Park et al., 2019), and extreme gradient boosting (XGBoost)
42 (Choi et al. 2018; Han et al. 2019; Zhang et al., 2023) have been extensively employed in the research
43 field of drought. Machine Learning models can learn the input-output relationships in training data and
44 can effectively leverage big data to improve prediction accuracy (Mardian et al., 2023). By training tree-
45 based machine learning models, Bachmair et al. (2016) discovered that tree-based machine learning
46 models outperform baseline models. Jungho and Kim (2023) employed a tree-structured XGBoost model
47 to predict the likelihood of impact occurrence (LIO) of drought on public water supply. Their findings
48 demonstrated that the XGBoost model exhibited high accuracy and low uncertainty. Furthermore, the
49 XGBoost model necessitates only minor hyperparameter tuning, and its performance is relatively
50 insensitive to the selection of hyperparameters (Gao and Ding, 2020; Barnwal et al., 2022).

51 Previous research indicates that numerous factors significantly impact hydrological drought. Zou et
52 al. (2018) demonstrated that climate change is the primary factor affecting hydrological drought on long-
53 term scales. Wang et al. (2021) found that climatic variables such as precipitation and evapotranspiration
54 significantly influence the duration of hydrological drought. Additionally, Gan et al. (2023) revealed that
55 large-scale climatic factors and sunspot activity have a substantial impact on hydrological drought events
56 in the Huaihe River Basin. Despite many studies showing that machine learning models outperform

57  physical models in terms of prediction accuracy, these models lack transparency and interpretability.
2
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58 Most research on machine learning models for drought prediction focuses on model performance, often
59 neglecting the role of different factors influencing drought occurrence in model predictions. For example,
60 Xu et al. (2022) established a hybrid model combining autoregressive integrated moving averages
61 (ARIMA) and long short-term memory (LSTM) to predict the standardized precipitation
62 evapotranspiration index at multiple time scales. Yu et al. (2023) combined the Hydrologiska Byrans
63 Vattenbalansavdelning (HBV) model with an LSTM neural network to improve the prediction ability for
64 semi-arid basins. Yalcin et al. (2023) proposed a hybrid model of convolutional neural networks (CNN)
65 and LSTM to enhance the prediction accuracy of the standardized precipitation evapotranspiration index.
66 However, these studies do not consider the influence of different factors on the model output.

67 Recent advancements in Explainable Al (XAI) techniques have provided opportunities for
68  understanding why models make certain predictions (Gunning et al., 2019; Islam et al., 2022). Recently,
69 local interpretability methods have been developed and can be implemented for neural network and
70 random forest model architectures (Ribeiro et al., 2016a). The Local Interpretable Model-Agnostic
71 Explanation (LIME) method has been widely used, but it exhibits a high degree of instability due to
72 considerable variation in its explanations upon repeated use (Ribeiro et al., 2016b). Therefore, the
73 Shapley Additive Explanations (SHAP) approach was proposed as a solution. Grounded in the strong
74 theoretical basis of game theory, it provides more robust mathematical accuracy and consistent extension
75 on top of the LIME framework (Lundberg and Lee, 2017; Molnar, 2022). At present, there are few studies
76 on interpretable machine learning using the SHAP algorithm. For example, Dikshit and Pradhan (2021)
77 employed an LSTM model combined with the SHAP algorithm to predict droughts, demonstrating that
78  the inclusion of climate variables as predictors can enhance prediction accuracy. Similarly, Mardian et
79 al. (2023) utilized an XGBoost model and SHAP to forecast droughts in the Canadian prairies, and
80 clarified the importance of spatial and temporal predictors, drought indicators, GRACE groundwater
81 distribution and teleconnection in drought prediction. However, the range of drought-influencing factors
82 considered in their research is still not comprehensive enough. For example, soil temperature and water
83 content, surface thermal radiation and other factors are also important factors affecting drought (Raposo
84 etal., 2023).

85 In light of the above, the novelty of this study is to employ interpretable machine learning models
86 for hydrological drought prediction and to identify the contribution of different influencing factors to the

87 model prediction results. While SPI is a precursor to SRI, this study disentangles the hierarchy of
3



https://doi.org/10.5194/egusphere-2025-1891
Preprint. Discussion started: 25 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

88 contributing factors, including SPI, large-scale climate indices, and soil moisture. Soil moisture directly
89 affects hydrological drought, and it can analyze the contribution of different factors to drought when it
90 is predicted together with drought factors such as large-scale climate factors. For example, Mardian et al.
91 (2023) employed a method combining the XGBoost model with SHAP (Shapley Additive Explanations)
92 values, utilizing a variety of drought influencing factors such as large-scale climatic factors and soil
93 moisture, to predict drought conditions in the context of the Canadian Drought Monitor (CDM) and to
94  understand the underlying driving factors. Therefore, the objectives of the study are: i) Utilizing the
95 XGBoost model, combined with 26 factors predicted monthly and 18 factors predicted seasonally, the
96 hydrological drought in the Huaihe River Basin is predicted, and the performance evaluation is carried
97 out by using precision and recall indicators; ii) Various SHAP plots were employed to gain insights into
98 the model outputs and analyze the influence of different drought variables on the predictive results of the

99 model.

100 2 Study area and data

101 2.1 Study area

102 In this paper, as shown in Figure 1, the Huaihe River Basin is selected as the research area, and the
103 grid is divided at a resolution of 1°latx1°lon, with a total of 28 grid regions, which takes into account the
104 computational feasibility and spatial heterogeneity. Although large-cale climatic factors have spatial
105 consistency, their effects on regional precipitation can be different through local terrain-atmosphere
106 feedback (Lu et al., 2006). Gridded analysis identifies sensitive subregions, supporting targeted
107 mitigation. The Huaihe River Basin is located at 111°55'-121°25'E, 30°55'-36°36'N, covering an area of
108 approximately 270,000 square kilometers. It experiences significant spatiotemporal variations in
109  precipitation, with an average annual precipitation of around 883 millimeters. Situated in the transitional
110 climatic zone from south to north, the southern part of the basin falls under a subtropical climate, while
111 the northern part experiences a warm temperate climate. The average annual temperature ranges from 11
112 to 16°C. The winter and spring seasons in the basin are relatively dry, while the autumn and summer
113 seasons are hot and rainy, resulting in pronounced seasonal fluctuations between droughts and floods.
114 The average annual runoff depth in the basin is 230 millimeters. Due to its unique geographical location,

115 the area is prone to frequent flooding, leading to high water levels and prolonged flood conditions. In
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addition, the annual average water surface evaporation in the Huaihe River Basin ranges from 900 to
1500 millimeters. As one of the important agricultural production bases in China, the basin is densely
populated with substantial water demands. However, the region frequently suffers from drought disasters.
Since the beginning of the 21st century, an average of 2.698 million hectares of crops, accounting for 21%

of the total cultivated land area in the basin, have been affected annually.

112°E 114°E 116°E 118°E 120°E
T T T T T
N
36°N 1 36°N
35°N 135°N
34°N 434N
33°N 133°N
32°N 1 32°N
DEM(m)
[
Legend B s 2
— Boundary 239481
ol by - doa
0 45 90 180 270 360 I s
[ == km B 556 — 2122
) ) ) | )
112°E 114°E 116°E 118°E 120°E

Figure 1: Huaihe River Basin and 28 grid area location.
2.2 Data
We obtained monthly average precipitation, wind speed, temperature, evapotranspiration, monthly

average runoff, 0-10cm soil moisture, and 100-200cm soil moisture data sets for the Huaihe River Basin

from the website https://disc.gsfc.nasa.gov/datasets/ GLDAS NOAH10 M_2.0/ for the period 1960 to

2014. The monthly average 2 m dewpoint temperature, surface net solar radiation, surface net thermal
radiation, surface pressure, and leaf area index data sets were obtained from the ERA5-Land reanalysis

dataset (https://cds.climate.copernicus.eu/). According to whether the grid center point falls within the

basin, 28 grid regions are defined. If the center point of the grid is not within the basin boundary, the
region is not divided into grids. The grid analysis is carried out with these grid points as the center and
1°latx1°lon as the resolution, covering a total of 28 grid regions. Using the interpolation method in array,

the data of Huaihe River Basin are interpolated to 28 grid regions.
5
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134 Numerous studies have demonstrated the significant influence of large-scale climate indices,
135 including the Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Pacific pattern
136 (NP), Pacific Decadal Oscillation (PDO), and Nino3.4, on drought dynamics(Gan et al., 2023; Phan-Van
137 et al., 2022; Wu and Xu, 2020; Xiao et al., 2019). For example, the positive phase of AMO leads to a
138 decrease in summer precipitation in the Huaihe River Basin by enhancing the western Pacific subtropical
139 high (Lu et al., 2006); the Pacific Decadal Oscillation ( PDO ) has the most significant impact on the
140 monthly runoff in the Huaihe River Basin (Sun et al., 2018). These selected climate factors (Nino3.4,
141 AMO, TPI, PDO, AO, TNI, and NP) for the Huaihe River basin analysis were acquired from the National
142 Oceanic and Atmospheric Administration (NOAA) climate database

143 (http://www.esrl.noaa.gov/psd/data/climateindices) , covering the period from 1960 to 2014.

144 3 Methods
145 3.1 Drought index
146 In this study, the standardized precipitation index (SPI) (McKee et al., 1993) is used to characterize

147 meteorological drought. SPI is widely used for drought risk assessment and monitoring due to its ease of

148 calculation and ability to work on multiple time scales. The calculation method of SPI is as follows:
X
x*tef

AT (a)
150 F(x):J.X f(x)dx @

0

149 f (x) ()

151 Assuming that the precipitation series X at a certain time scale follows a stationary gamma

152 distribution, where ¢z and 3 are the scale and shape parameters (& >0, 8 >0). The cumulative

153 probability F(X) of each item is normalized to obtain the corresponding SPI.

154 The standardized runoff index (SRI) was first proposed by Shukla and Wood (2008) as an effective
155 and accurate index for describing hydrological drought characteristics. It has been widely used in
156  hydrological drought identification. SRI is also calculated by transforming the cumulative flow
157 distribution of a given time scale into a standard normal distribution using equiprobability transformation,
158 similar to the calculation method of SPI. The SPI/SRI classes are classified as shown in Table 1 (Li et al.

159 2024). In this study, drought is classified into four classes, namely, Normal (ND), Mild drought (D1),
6
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160 Moderate drought (D2), and Severe drought and Extreme drought (D3), according to Table 1. However,
161 due to the limited number of extreme drought events, it posed an issue in training the model. Therefore,

162 the classes of Severe drought and Extreme drought were merged into one.

163 Table 1: Drought class classification and corresponding SPI values and SRI value.

SPI/SRI value Class
>0 Normal
0to-1.0 Mild
-1.0to-1.5 Moderate
-1.5t0-2.0 Severe
<-2.0 Extreme

164 3.2 Machine learning models

165 In this paper, the XGBoost model is used for multi-input single-output regression prediction
166 problems to predict the hydrological drought in the Huaihe River Basin. The XGBoost model is an
167 ensemble learning algorithm belonging to the Boosting algorithm category. It utilizes decision trees as
168 its basic elements and implements a gradient-boosting algorithm to minimize loss when adding new
169 models. XGBoost aims to improve the training speed and predictive performance of gradient-boosting
170 decision trees. The foundational knowledge about the mechanism and implementation behind XGBoost

171 can be found in the paper by Chen and Guestrin (2016). Assuming we have K base models denoted as
172 ft(X)e Ft=12,...... K, where F the model space contains all the base models, the XGBoost
173 model can be represented using the following function:

174 §=F(x)=Y" () ®)
175 Where the parameters of the XGBoost model primarily consist of the structure of each tree and the
176 scores in the leaf nodes, that is, the learning of each function ft (X)

177 As each base model is generated in a certain sequential order, the creation of the subsequent tree

178 takes into account the predictions made by the preceding tree. Therefore, the objective function of the t

179 base model can be expressed as follows:

YO =31y, 9.0+ £, )+ (F,) @



https://doi.org/10.5194/egusphere-2025-1891
Preprint. Discussion started: 25 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

(t-1)

181 Here, I(yi, yi(til))represents the loss function related to yi,yi(H) Y denotes the

182 predictions of the first {—1 decision trees for sample i (i.., the sum of predictions made by the first

183 t—1 trees), Y, represents the actual value of sample i, f, (Xi) represents the prediction of the t

184 decision tree for sample i , and Q( ft) represents the model complexity of the t tree. Therefore,

185 the predictions of the first K trees for the sample | are equal to the predictions of the first k-1

186 trees plus the prediction of the K tree.
187 3.3 Model input data

188 The XGBoost model for 28 grid areas is established, and the data types used in each region are the
189 same. As shown in Table 1, for the monthly data analysis, 26 different drought-influencing factors were
190 considered. These include a month-scale SPI (SPI-1) and SPI indices at different time scales of 1 month
191 and 2 months in advance. Large-scale climate indices (AMO, TPI, PDO, AO, TNI, NP),
192 evapotranspiration, wind speed, 2 m dewpoint temperature, soil moisture content, surface net thermal
193 radiation, surface net solar radiation, surface pressure and leaf area index were considered.

194 As shown in Table 2, for seasonal data analysis, the basin data are classified by season, and 18
195 different drought influencing factors are used. It includes SPI-3 value, soil moisture content,
196 evapotranspiration, surface net thermal radiation, air temperature, NINO3.4, NP, wind speed, TNI, PDO,
197 TPI, surface pressure, AO, AMO, leaf area index, 2 m dewpoint temperature and surface net solar
198 radiation in four seasons.

199 For monthly and seasonal data sets, SHAP (Shapley Additive Explanation) values were used to
200 analyze the contribution of 28 grid regions to determine the impact of each factor.

201 Monthly-scale predictions capture the rapid onset of drought, which is critical for early warning
202 systems, whereas seasonal analysis aligns with agricultural planning cycles. Thus, our study employs
203 both monthly and seasonal analyses to comprehensively assess short-term variability and long-term

204  trends in hydrological drought.

205 Table 2: The drought impact factors of the monthly scale prediction input of the model (T is the lead time,
206 SPI-1, SPI1-3, SPI-6, and SP1-9 are SPI values at different monthly scales.).

Drought influencing factors (monthly)
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20 AMO

21 PDO

22 AO

23 TNI

24 NP

25 TPI

26 leaf area index

207 Table 3: The drought impact factors of seasonal prediction input of model.

Drought influencing factors (seasonal)

1 SPI-3 (different seasons)
2 d2m temperature

3 surface pressure

4 evapotranspiration

5 Air temperature

6 wind speed

7 surface net solar radiation
8 surface net thermal radiation
9 0-10cm soil moisture

10 100-200cm soil moisture

10
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11 Nino3.4

12 AMO

13 PDO

14 AO

15 TNI

16 NP

17 TPI

18 leaf area index

3.4 Model evaluation

Based on the optimal parameters obtained during the training phase, the XGBoost model is utilized
to predict the hydrological drought situation in the Huaihe River Basin from 2004 to 2014. These
predictions will be assessed using precision and recall as measurement metrics. Precision is defined as
the ratio of correctly classified instances of a specific class to the total number of predicted instances,
quantifying the model's precision in predicting drought conditions and evaluating its reliability.
Conversely, recall represents the ratio of correctly classified instances of a specific class to the total
number of observed instances in that class, capturing the probability of the model predicting observed

drought conditions and reflecting its sensitivity (Mardian et al., 2023; Zhang et al., 2023).

precision= _TP (5)
TP+FP
Recall = _TP (6)
TP+FN

Where the classification evaluation metrics employed are True Positives (TP), False Positives (FP),
and False Negatives (FN). TP denotes the number of actual positive samples correctly predicted as
positive, FP represents the number of actual negative samples incorrectly predicted as positive, and FN

signifies the number of actual positive samples incorrectly predicted as negative.

11
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223 3.5 Shapley Additive Explanations (SHAP)

224 SHAP, a machine learning interpretability method, provides a unified approach by combining
225 elements from additional variable attribution methods with Shapley values as a measure of variable
226 importance. Shapley values were originally introduced in game theory to determine the contributions
227 made by each player in cooperative games. The fundamental idea is that each player receives a
228 corresponding payout based on their contribution (Shapley, 1953). The interpretation of SHAP values is
229 straightforward: larger absolute SHAP values indicate greater weight of the variable in predicting the
230 model, while negative (positive) SHAP values exert a negative (positive) influence on the prediction
231 process. Lundberg and Lee (2017) developed the SHAP method based on the theoretical foundation of
232 Shapley values to explain the influence of each variable on model predictions, thereby providing
233 increased transparency to the model. The Shapley value is calculated as the average marginal contribution
234 based on all possible variable permutations. The mathematical expression for the classic SHAP value is

235 as follows:

236 o :ZSQNlSl!(n_|S|_1)![V(SU{i})_v(sﬂ 7

n!
237 Where ¢; represents the contribution of variable i , N represent the set of all variables, N
238 denote the number of variables N , S indicate the subset of N that includes variable i , and
239 V(N ) represent the baseline, which signifies the predicted outcome of each variablein N when their

240 values are unknown.
241 The model results for each observed value are estimated by summing the SHAP values of each

242 variable corresponding to that observed value. Hence, formulating the explanation model as follows:
M
r r
243 g(Z )=¢o+z¢izi (8
i-1

244 Where, Z' € {O,l}M , the variable quantity is denoted as M, and the value ¢ can be obtained from

245  equation (7). SHAP offers a variety of Al model explainers.
246 In this study, we utilized a tree explainer to compute SHAP values based on the best XGBoost model

247 for assessing drought impacts, aiming to estimate the contributions of each variable.

12
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248 4 Results

249 4.1 Model performance

250 The study period for this research spans from 1960 to 2014, with the model training period from
251 1960 to 2003 and the prediction period from 2004 to 2014. The input and output data types for 28 grid
252 areas are the same. Take the 7th grid area as an example, when using monthly data, the input was 26
253 different drought influencing factors, and the output was SRI-1. The number of input samples during
254 model training was 13767, and the number of output samples was 526. There are 3432 input samples and
255 132 output samples during the model prediction period. When using seasonal data, the input is 18 factors
256 without drought, and the output is SRI-3 in different seasons. The number of input samples during model
257 training is 792, and the number of output samples is 44. The number of input samples in the model
258  prediction period is 198, and the number of output samples is 11. According to the data in Table 4 and
259 Figure 2, the overall precision of the XGBoost model is 79.9%, which means that it has a 79.9% ability
260 to correctly identify drought classes. In the identification of the ND drought class, the performance of
261 the model is particularly excellent. Figure 2 shows that the median precision and recall rate of the ND
262 class are both more than 0.8. It can be seen from the data in Table 4 that the recall rate of the ND drought
263 class is 91% and the precision rate is 88%, which proves that the model has high sensitivity and reliability
264 in predicting the ND drought class. At the same time, the precision rates of ND and D3 drought classes
265 are 88% and 86%, respectively, indicating that the model had good prediction accuracy for these two
266 types of droughts. However, the precision rates of the D1 and D2 drought classes are 74% and 61%,
267 respectively, reflecting the lack of prediction accuracy of the model in these classes.

268 In addition, the boxplot in Figure 2 further reveals the precision and recall performance of the model
269 for each drought class in 28 grid regions. Although the median precision and recall of the D1 drought
270 class are both close to 0.8, indicating that the model has a high predictive ability in this class, the
271 performance of the D2 and D3 drought classes is relatively poor. Especially for the D3 drought class, the
272 median recall rate does not exceed 0.5, indicating that the model is not sensitive to the identification of
273 such drought events, and there are some limitations in the prediction. owever, although the recall rate of
274 the D3 drought class is low, its precision is almost as high as the ND drought class, which is mainly due
275 to the low frequency of D3 drought class events. The model can successfully capture all D3 drought class

276 events in some grid areas, thereby improving the precision of this class.

13
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277 Table 4: The average accuracy and recall rate indicators for each drought level predicted by the 28 regional
278 models.
Class Precision (%) Recall (%)
ND 88 91
D1 74 78
D2 61 47
D3 86 50
279
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281 Figure 2: Box plots of the accuracy and recall rates of the four drought categories predicted by the 28 regional
282 models (‘P’ represents the accuracy rate, and ‘R’ represents the recall rate. The small square represents the

283 average.).

284 4.2 Prediction maps

285 According to the predicted drought data, 2011 was identified as a year with relatively severe drought
286 conditions. To visually assess the predictive capability of the model, drought predicted, observed, and
287 difference maps were created for each month of 2011 (Figure 3 to Figure 5). In 2011, the model accurately
288 captured drought situations across most regions. In January, the drought situation was severe, and the

289 drought class was mainly in the D2 and D3 classes. However, the prediction map of the model shows

14
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that the drought degree in most regions is lighter than the actual drought situation, and the drought class
is mainly classified as D1, which relatively underestimates the actual situation of drought. In February,
the drought situation was rapidly reduced, and the prediction map of the model was basically consistent
with the observation map. In March and April, the drought conditions in the entire basin rapidly escalated
and became severe, and most of the areas in the observation map reached the drought classes of D2 and
D3, and only a few areas in the north were classified as D1 drought class. Consequently, this period poses
a considerable challenge to the predictive ability of the model, making it an appropriate period to evaluate
the predictive performance of the model. In general, the model effectively predicts the occurrence and
deterioration of drought and captures the spatial distribution pattern. However, in some parts of the

central and western regions, the model still underestimates the drought situation.
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Figure 3: The observed drought types of each month in 2011.

In May, the severity of the drought situation decreased relative to the previous two months, and the
actual observed map and the model-predicted map were largely consistent. According to the observed
map, in June, a drought occurrence was observed in the northern region where no drought had been
previously recorded. Furthermore, in July, the drought area shifted from the northern to the western

region. It was not until August that drought gradually diminished in most areas. Basically, the model
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307 captures the change of drought, but for some areas of D3 drought class, the model predicts them as D2

308 drought class.
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310 Figure 4: The drought types of each month in 2011 predicted by the Model.

311 In September, drought conditions were found in the eastern and southern regions on the observed
312 map. However, the drought situation in some areas is underestimated on the map predicted by the model.
313 In October, the model significantly overestimated the severity of the drought situation. According to the
314 observed map, all regions except a small part of the western region experienced the D1 drought class. In
315 contrast, the model-predicted map shows widespread drought across the region, with most of the regions
316  classified in the D2 drought class. In November and December, the drought in the observation map

317 dissipated rapidly, and the drought situation was basically the same as that in the model prediction map.
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319 Figure 5: The difference between the predicted results of the model and the observed data values (Difference
320 = SRIprediction - SRIactual).

321 In general, the XGBoost model has a great performance in capturing the spatial structure and

322 temporal dynamics of drought events during the 12-month period of 2011. However, the model indicates
323 that while the model can distinguish between drought and non-drought conditions, it lacks clarity in
324 defining the boundaries between different drought classes. In most cases, the model underestimates

325  drought conditions compared to the observed results.

326 4.3 Variable importance analysis

327 4.3.1 Monthly prediction analysis

328 To study the effects of different factors on drought, 26 different drought influencing factors were
329  considered, and the corresponding influencing factors are analyzed for 28 grid regions, and the
330 contribution analysis is made with SHAP values. Due to the limited space, only the analysis of the 7th
331 grid region is shown in Figure 6. Figure 6 reveals the contribution of each input feature based on the
332 SHAP value of each instance in 28 grid regions. In the vertical direction, the variables in the bee colony
333 graph are sorted according to their absolute SHAP values, which also reflects the importance of ranking

334  variables. The density of points represents the eigenvalues of each instance in each row. The X-axis
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shows the SHAP value corresponding to a single instance. The left side of the Y-axis of the bee colony
graph represents the negative total contribution of the features in the XGBoost model, while the right
side represents the positive total contribution. The analysis reveals that SPI plays a dominant role,

followed by AMO and evapotranspiration.
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Figure 6: The SHAP values of 26 different influencing factors in each month of the 7th grid region from 2004
to 2014.

Figure 7 illustrates the interpretability of the XGBoost model focusing on the 7th grid region,
providing insights into the average impact of the 26 influencing factors on model output. These findings
corroborate the insights from Figure 6, highlighting that SPI, AMO, and evapotranspiration are the
predominant factors influencing the predictions of the model. Table 3 indicates that the absolute average
SHAP value of SPI, incorporating monthly precipitation data for the entire basin, is 0.190, marking it as

the most substantial influence on hydrological drought within the 7th grid region.
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349 Figure 7: The absolute average SHAP values of 26 different influencing factors at the 7th grid region from
350 2004 to 2014.

351 To gain a deeper understanding of the factors contributing to drought events in the study area, As
352 shown in Figure 8, this study shows the spatial distribution of the first three main drought-influencing
353 factors and discusses the changes of drought-influencing factors in the basin. The results show that the
354 main influencing factor of hydrological drought in the Huaihe River Basin is meteorological drought. As
355 shown in Table 5, the absolute average SHAP value of the first influencing factor is significantly higher
356  than that of the second and third influencing factors. Large-scale climate factors (particularly AMO)
357 emerge as the secondary major influence, and about half of the North Central Basin is significantly
358 dependent on these factors. For the third influencing factor, a diverse range of large-scale climate
359 variables, such as TPI, PDO, NP, TNI, and AMO, affect almost half of the study area. In summary, the
360 foremost determinant of hydrological drought is meteorological drought. Large-scale climate factors

361 (notably AMO) rank second in importance, followed by factors like soil moisture content, and so on.
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The findings demonstrate that the Standardized Precipitation Index (SPI) serves as the dominant

driver of hydrological drought in the Huaihe River Basin, consistent with the conclusions of Gan et al.

(2023), who identified meteorological drought as a critical precursor to hydrological extremes in this

region. Further support arises from Wang et al. (2021), whose analysis of drought propagation

mechanisms in the Huaihe Basin revealed indirect hydrological drought impacts mediated through soil

moisture and evapotranspiration—a pattern corroborated by the secondary influence of soil moisture and

evapotranspiration in this study. However, compared with the study of Zou et al. (2018) in the Weihe

River Basin, the influence of large-scale climate factors in this study is more prominent, which may be

related to the fact that the Huaihe River Basin is located in the climate transition zone and is more

sensitive to the air-sea coupling phenomenon.

Table 5: The first three drought influencing factors and the SHAP value of the absolute average influence of

28 grid areas in Huaihe River Basin.

SHAP
value  The first ~ Average Average . Average
. i The second The third
influencing SHAP i K SHAP i . SHAP
influencing factor influencing factor
grid factor value value value
area
1 SPI-1 0.160 Evapotranspiration 0.040 TPI 0.038
Soil moisture
2 SPI-1 0.190 AO 0.018 content(100- 0.014
200cm)
Soil moisture
3 SPI-1 0.189 TPI 0.030 content(100- 0.023
200cm)
4 SPI-1 0.178 NP 0.020 PDO 0.016
5 SPI-1 0.147 Evapotranspiration 0.044 NP 0.017
6 SPI-1 0.180 TPI 0.025 Evapotranspiration 0.021
7 SPI-1 0.190 AMO 0.037 Evapotranspiration 0.023
8 SPI-1 0.212 TPI 0.030 TNI 0.020
9 SPI-1 0.161 AMO 0.034 T=2 SPI-6 0.028
Surface net
10 SPI-1 0.195 AMO 0.037 . 0.031
thermal radiation
11 SPI-1 0.226 AMO 0.037 TNI 0.012
12 SPI-1 0.221 AMO 0.033 T=2 SPI-3 0.017
13 SPI-1 0.228 AMO 0.028 NP 0.026
Soil moisture
14 SPI-1 0.204 0.057 T=1SPI-1 0.029

content(100-200cm)
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Figure 8: The first three drought-influencing factors of 28 grid areas in the Huaihe River Basin.

4.3.2 Seasonal prediction analysis

To accurately reflect the differences in drought-influencing factors across different seasons, this

study utilized 18 different drought-influencing factors to predict the hydrological drought in the Huaihe

River Basin. Histograms of the absolute average SHAP values for different influencing factors in four

seasons in the 7th grid region are presented in Figure 9. The absolute average SHAP values of SPI-3 in

spring, summer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247 respectively, which had the

greatest impact on hydrological drought in the same season. In addition, the absolute average SHAP

values of evapotranspiration, soil moisture content, air temperature, and surface net thermal radiation

were close to or exceeded 0.05, which also had a significant impact on hydrological drought in the Huaihe

River Basin.
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Figure 9: The absolute average SHAP values of 18 different influencing factors in the 7th grid region of four
seasons ((a) Spring; (b) Summer; (¢) Autumn; (d) Winter).

To understand the spatial and temporal distribution characteristics of drought and the potential
impact mechanism, Figure 10 displays the spatial distribution of the top three influencing factors in each
season. The leading influencing factors across the four seasons include SPI-3, soil moisture content, and
surface net thermal radiation, with SPI-3 being predominant across all seasons and regions. As shown in
Figure 11, the absolute average SHAP value of the primary factor exceeded the sum SHAP values of the
second and third factors. Aside from SPI-3, soil moisture content also exerts a significant influence on

hydrological drought in summer and autumn, particularly in the southern and southeastern parts of the

river basin. In winter, certain areas in the central part of the river basin are mainly affected by surface net

thermal radiation and surface net solar radiation.
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398 From the perspective of the second influencing factor, hydrological drought in most areas of the
399 basin in spring is mainly affected by soil water content and evapotranspiration. In the rest of the region,
400 surface pressure, temperature, radiation, and other factors also play an important role. It is worth noting
401 that in the 15th grid region, the surface pressure becomes a key secondary influencing factor, and its
402 absolute average SHAP value reaches 0.175. This value is significantly higher than the second impact
403 factor in other regions, and even close to the primary impact factor in the same grid area. This indicates
404 that it is extremely sensitive to surface pressure in this particular place. During summer, the influence of
405 large-scale climatic factors such as the AMO, PDO, and TPI becomes more pronounced compared to
406 spring. Additionally, soil moisture content and surface radiation continue to account for a substantial
407  proportion of the influence on hydrological drought. Regions with absolute average SHAP values
408 surpassing 0.1 in summer constitute approximately one-seventh of the study area, indicating elevated
409 sensitivity to these factors during this season. Similar to spring, soil moisture content and
410 evapotranspiration remain predominant influencing factors for hydrological drought in half of the grid
411 areas during autumn and winter. The remaining regions are mainly influenced by surface net thermal
412 radiation and surface net solar radiation. Specifically, during winter, the second influencing factors for
413 three grid regions (the 12th, 13th, and 21st grid regions) in the central part of the basin are soil moisture
414 content and evapotranspiration, with absolute average SHAP values exceeding 0.1. This indicates a
415 relatively higher influence of these secondary factors in these regions compared to others.

416 Compared with the second impact factor, the large-scale climatic factors in the third impact factor
417 have an increased influence on hydrological drought in the four seasons. In spring and autumn, soil
418  moisture content exhibits a more substantial influence on hydrological drought, while in summer, air
419 temperature is considered to be a more important factor. However, in winter, half of the study areas
420 continue to be dominated by soil moisture content and evapotranspiration, whereas most of the remaining

421 study areas are primarily influenced by large-scale climate factors such as TNIL, PDO, NP, and AO.
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422
423 Figure 10: The first three drought-influencing factors of 28 grid points in Huaihe River Basin in each season.

424 According to the above results, there were significant differences in the influencing factors of
425 drought among the four seasons. This diversity highlights the need for us to pay more attention to the
426  weights and dynamic changes of various influencing factors when predicting and understanding the
427 spatial-temporal distribution characteristics of drought. Although the SPI factor continues to dominate,
428 at some grid points, factors such as soil moisture content in summer and autumn, as well as thermal
429  radiation in winter, cannot be ignored. This suggests that even for the same influencing factor, its
430 influence can vary greatly in different seasons and regions. Furthermore, in addition to the influence of
431 meteorological drought, the influencing factors of spring hydrological drought are mainly biased toward
432 soil moisture content and evapotranspiration, in addition to surface pressure, temperature, radiation, and
433 other related factors. The absolute average SHAP value of these influencing factors is basically no more
434  than 0.1, which is very different from SPI-3, but its impact on hydrological drought cannot be ignored.
435 In autumn and winter, the above factors still dominate, but at the same time, the proportion of large-scale
436 climate factors gradually increases, indicating that climate change between different seasons may play

437 an important regulatory role in the composition of drought-influencing factors.
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439 Figure 11: The absolute average SHAP values of the first three drought-influencing factors in each season

440 (The X-axis represents 28 grid regions in the Huaihe River Basin).

441 5 Discussion

442 SHAP analysis based on the XGBoost model unequivocally identifies the SPI as the most influential
443 predictor of hydrological drought across the Huaihe River Basin. Beyond SPI, the key secondary drivers
444 exhibit a distinct spatial and seasonal differences. In terms of space, the hydrological drought in the
445 northern part of the basin shows higher sensitivity to large-scale climate oscillations such as AMO,
446 indicating that large-scale climate factors regulate regional precipitation patterns (Yu et al., 2024). On
447  the contrary, the secondary factors affecting the hydrological drought in the southern part of the basin are
448 mainly surface processes, especially soil moisture and evapotranspiration.(Mtupili et al., 2025; Zhu et
449  al,, 2025). The difference in the second influencing factors of hydrological drought in the southern and
450 northern parts of the basin may be due to the fact that the basin belongs to the temperate-subtropical
451 transition position. For the seasonal scale, in spring, soil moisture and evapotranspiration account for a
452 large proportion of the explanatory power of the model. In summer, the relative weight of large-scale
453 climatic factors increases, which is consistent with the enhancement of water vapor transport (Yu et al.,
454 2024). In autumn and winter, radiative fluxes (net solar and thermal radiation) assume greater importance
455 (Jin et al., 2025). Collectively, these findings underscore SPI as the primary driver while revealing the

456 nuanced spatio-temporal controls exerted by secondary factors, thereby providing a scientific foundation
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457 for developing more targeted drought mitigation and water resource management strategies across the
458 diverse Huaihe River Basin.

459 When studying the influence of large-scale climate indices on drought, the correlation between
460 climate indices and drought for the same period and a certain lead time is often considered, and the results
461 show that climate indices for the same period and different lead times have a certain influence on drought
462 in the basin, and the degree of influence varies with the changes in the study area. For example, Ren et
463 al. (2017) studied the correlation between SPI and large-scale climate indices with advance periods of 0,
464 1, 2, and 3 months, and the correlation results show that Nino3.4 has significant correlation in August-
465 October, and PDO has significant correlation in January-May and June-December of the same period.
466 Lv et al. (2022) analyzed the correlation between large-scale climatic factors and drought in different lag
467  periods. The results show that large-scale climatic factors in the same period also have an impact on
468 drought. Due to the many influencing factors considered in this paper, only the effect of climate indices
469 on drought in the basin during the same period was considered when selecting the large-scale climate
470 indices. Subsequent studies can consider selecting the most relevant large-scale climate factors in
471 different months or seasons as the influencing factors for basin drought prediction to further improve the
472 accuracy of drought prediction. Before inputting the influencing factors into the machine learning model
473 for training, methods such as random forest and principal component analysis (PCA) can be used to select
474 the influencing factors. The application of these methods can optimize the influencing factors and provide

475 strong support for more accurate drought trend prediction and management strategies.

476 6 Conclusions

477 Drought is one of the most significant environmental and climate problems in the world, and
478 drought prediction is a crucial means of drought prevention. In this study, the integration of SHAP and
479 XGBoost provides a novel framework that can not only improve the prediction accuracy, but also show
480 the impact of different drought influencing factors on drought. The framework can provide two types of
481 support for decision makers: (1) giving priority to high weight factors in real-time drought warning; (2)
482  Identifying early risk signals in long-term water resources planning. The main conclusions are as follows:
483 1) The XGBoost model achieved an accuracy of 79.9% for identifying drought classes. The

484 model performs particularly well in predicting ND and D1 drought classes, with a precision rate of
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88 % and 74 %, respectively. It also has a recall rate of 91 % and 78 %. However, the prediction
performance of the model for the D2 and D3 drought classes is relatively poor, especially for the
D3 drought, the recall rate should not exceed 0.5, indicating that the recognition sensitivity of the
model for the D3 class is limited. In general, the model has high prediction reliability for ND and
D1 classes, but limits in the prediction performance of D2 and D3 classes.

2)  This study determined that SPI is the most critical factor affecting hydrological drought
in the Huaihe River Basin. In 28 grid regions, the absolute average SHAP value of SPI is not less
than 0.147, which is much higher than other influencing factors. In addition, large-scale climate
factors, soil moisture content, and evapotranspiration play a significant role in hydrological drought
in the basin.

3)  The SPI remains a major influence in all seasons with absolute average SHAP values of
0.360, 0.261, 0.169, and 0.247 in spring, summer, autumn, and winter respectively. Additional
factors such as soil moisture content, net heat radiation, and solar radiation also play seasonal roles.
Soil moisture content and evapotranspiration are significant factors in spring and autumn, while

temperature and large-scale climate factors are critical in summer and winter.
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